
1

2

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

CS3351 DIGITAL PRINCIPLE AND COMPUTER ORGANIZATION

ACADEMIC YEAR: 2024-2025

II YEAR/III
TH

 Semester Lab Manual

3

Expt. No:
Verification Of Boolean Theorems Using Logic Gates

Date:

AIM:

To study and verify the truth table of basic logic gates NOT, AND, OR, NAND,

NOR and EX-OR and to verify the Boolean theorems.

COMPONENTS / EQUIPMENTS REQUIRED:

S.No. Name of the apparatus Range Quantity

1 Digital Trainer kit

2 NOT gate IC7404 1

3 AND gate IC7408 1

4 OR gate IC7432 1

5 EX-OR gate IC7486 1

6 NAND gate IC7400 1

7 NOR gate IC7402 1

8 Connecting wires

THEORY:

In Boolean algebra three basic logic operations are available. They are OR, AND, NOT.

These logic gates are digital circuits constructed from diodes, transistors, and resistors

connected in such a way that the circuit output is the result of a basic logic operation

(OR, AND, NOT) performed on the inputs.

Truth table: A truth table is a means for describing how a logic circuit's output depends

on the logic levels present at the circuit's inputs

DeMorgan's Theorem:

DeMorgan's theorems are extremely useful in simplifying expressions in which a

product or sum of variables is inverted. The two theorems are:

(A+B)' = A'.B'

(A.B)' = A' +B'

Commutative Law:

A.B = B.A
A+B = B+A

4

Associative Law:

A. (B.C) = (A.B). C

Commutative Law: A.B = B.A

Fig: 1.1

Associative Law: A. (B.C) = (A.B). C

Fig: 1.2

DeMorgans Law (A+B)’ = A’. B’

Fig: 1.3

5

Fig: 1.4

Observations:

Commutative Law:

A B A.B B.A

0 0

0 1

1 0

1 1

Tab: 1.1

Associative Law:

A B C A(BC) (AB)C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Tab: 1.2

DeMorgans Law:

A B (A+B)’ A’.B’

0 0

0 1

1 0

1 1

Tab: 1.3

6

INFERENCE AND CONCLUSION:

Thus the digital logic gates were studied and the Boolean theorems were verified using

the truth table.

VIVA QUESTIONS:

1. Obtain AND gate using only NAND gates.

2. What are universal gates?

3. State Demorgans theorem:

4. Implement OR gate using only NAND gate:

5. Write the truth table for EX-OR gate:

6. What is a logic gate?

7. State the consensus theorem in Boolean algebra:

8. What are don’t care conditions?

9. What is the the need for Quine Mccluskey method ?

10. What are minterm and maxterm?

7

Half Adder

Truth Table for Half Adder

A B Sum Carry

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

K-map simplification for Half Adder

K-Map for SUM: K-Map for CARRY:

SUM = A’B + AB’ CARRY = AB

LOGIC DIAGRAM OF HALF ADDER:

BLOCK SCHEMATIC OF HALF ADDER:

A S =A B

B C = AB

8

Expt. No: Implementation of Boolean Functions - Adders And

Subtractors using Logic Gates

Date:

AIM:

To design and verify the adders and subtractors using logic gates.

COMPONENTS / EQUIPMENTS REQUIRED:

S. No Components / Equipments Specifications Quantity

1.
2.

3.

Digital IC trainer

NOT, AND, OR, Ex-OR Gate

Connecting wires

IC 7404,7408,7432,7486

1

Each one

Sufficient numbers

THEORY:

Half Adder:

The half adder is an example of a simple, functional digital circuit built from two

logic gates. The half adder adds to one-bit binary numbers (AB). The output is the sum of

the two bits (S) and the carry (C). Note how the same two inputs are directed to two different

gates. The inputs to the XOR gate are also the inputs to the AND gate. The input "wires"

to the XOR gate are tied to the input wires of the AND gate; thus, when voltage is applied

to the A input of the XOR gate, the A input to the AND gate receives the same voltage.

Select an input combination from the pull-down selector and view the resulting output.

The logic circuit for the addition of two one bit numbers is referred to as a half adder.

Here A and B are the two inputs and S (sum) and C (carry) are two outputs. The two outputs,

the sum and carry equations are carried from the truth table of addition of two numbers.

They are S =ĀB+AB,

C= AB.

Full Adder:

A half adder has only two inputs and there s no provision to add a carry coming from

the lower order bits when multi bit additions performed. For this purpose, a third input

terminal is added and this circuit is used to add An, Bn and Cn-1 where An and Bn are the

nth order bits of the numbers A and B respectively and Cn-1 is the carry generated from

the addition of (n-1) th order bits. This circuit is referred to as full adder. The sum and

carry equations are carried from the truth table of addition of three numbers.

They are S=A B C,

C = AB + BC + CA.

9

Truth Table for Full Adder

A B C SUM CARRY

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

K-Map for SUM:

SUM = A’B’C + A’BC’ + ABC’ + ABC

K-Map for CARRY:

CARRY = AB + BC + AC

10

Full Adder

Half Subtractor:

A logic circuit for the subtractor of B(subtrahend) from A (minuend) where A and

B are 1bit numbers is referred to as a half subtractor. The two outputs, the difference

(D) and borrow (B) equations are carried from the truth table of subtraction of two

numbers.

They are

Difference = AB + AB,

Borrow = AB.

Full subtractor:

Just like a full adder circuit, full subtractor circuit performs multiple subtraction wherein

borrow from the previous bit position may also be there. A full subtractor will have three

inputs, An (minuend), Bn (subtrahend) and Cn-1 (borrow from previous stage) and two outputs

Dn (difference) and Cn (borrow). The difference and carry equations carried out from the

truth table of subtraction.

Diff.(D) = A B C,

Borrow = AB+AC+BC

LOGIC DIAGRAM OF FULL ADDER

BLOCK DIAGRAM OF FULL ADDER

An

Sn = (An Bn) Cn-1

Bn

Cn-1 Cn = Cn-1 (An Bn) +AnBn

11

Half subtractor

Truth Table for Half Subtractor

A B DIFFERENCE BORROW

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

K-Map for DIFFERENCE: K-Map for BORROW:

DIFFERENCE = A’B + AB’ BORROW = A’B

LOGIC DIAGRAM FOR HALF SUBTRACTOR

BLOCK SCHEMATIC OF HALF SUBTRACTOR:

A D =A B

B C = AB

12

Truth Table for Full Subtractor

A B C BORROW DIFFERENCE

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

0

0

1

0

1

1

0

1

0

0

1

K-Map for Difference:

Difference = A’B’C + A’BC’ + AB’C’ + ABC

K-Map for Borrow:

Borrow = A’B + BC + A’C

13

LOGIC DIAGRAM FOR FULL SUBTRACTOR

BLOCK SCHEMATIC OF FULL SUBTRACTOR

An

 Dn = (An Bn) Cn-1

Bn

Cn-1 Cn = Cn-1 (An

Bn) + AnBn

PROCEDURE:

1. Give the connections as per the Logic diagram.

2. Switch on the trainer kit.

3. Apply the binary inputs at the appropriate terminal and observe the corresponding

output.

4. Verify the truth table and repeat the above procedure for other circuits.

INFERENCE AND CONCLUSION:

Thus the adders and sub tractors were constructed using the logic gates and the

truth tables were verified.

REVIEW QUESTIONS:

1. What is the sum of binary number 1010+0100?

2. Parallel adders are logic circuits.

3. What is the IC number of 4 bit binary adder?

4. Find the 1’s complement of 10101010.

5. Subtract using 2’s complement 110102 – 011002.

6. Why NAND & NOR gates are called Universal gates?

7. Realize the EX-OR gates using minimum number of NAND gates?

8. Realize the AND gate using NOR gate.

Full

subtractor

14

Functional symbol for IC 7483:

Operand1 Operand2

C

O

Fig: 4.1

Pin Diagram of IC7483:

Fig: 4.2

B3 B2 B1 B0 A3 A2 A1 A0

4 bit IC 7483

C

15

Expt. No: DESIGN AND IMPLEMENTATION OF 4 BIT

BINARY ADDER / SUBTRACTOR USING IC 7483

Date:

AIM:

To study the 4 bit binary Adder/Subtractor using IC7483.

COMPONENTS / EQUIPMENTS REQUIRED:

S.No. Name of the apparatus Specifications Quantity

1 Digital Trainer kit - 1

2 OR gate IC 7432 1

3 AND gate IC 7408 1

4 Binary Adder / Subtractor IC 7483 2

5 Connecting wires - some

THEORY:

The full adder/sub tractors are capable of adding/subtracting only two single digit

binary numbers along with a carry input. But in practice we need to add/subtract binary

numbers, which are much longer than just one bit. To add/subtract two n-bit binary

numbers we need to use the n-bit parallel subtractor/adder.

Binary adder:

IC type 7483 is a 4-bit binary parallel adder/subtractor .The two 4-bit input binary

numbers are A1 through A4 and B1 through B4. The sum is obtained from S1 through S4.

C0 is the input carry and C4 the output carry. Test the 4-bit binary adder 7483 by

connecting the power supply and ground terminals. Then connect the four A inputs to a

fixed binary numbers such as 1001 and the B inputs and the input carry to five toggle

switches. The five outputs are applied to indicator lamps. Perform the addition of a few

binary numbers and check that the output sum and output carry give the proper values.

Show that when the input carry is equal to 1, it adds 1 to the output sum.

Binary subtractor:

The subtraction of two binary numbers can be done by taking the 2’s complement of

the subtrahend and adding it to the minuend. The 2’s complement can be obtained by

taking the 1’s complement and adding. To perform A-B, we complement the four bits of

B, add them to the four bits of A, and add 1 through the input carry. The four XOR gates

complement the bits of B when the mode select M=1(because x 0 x) and leave the

bits of B unchanged when M=0(because x 0 x) .Thus , when the mode select M is

16

Circuit Diagram for 4-bit Binary adder/subtractor:

Fig: 4.3

4- BIT BINARY ADDER: 4-BIT BINARY SUBTRACTOR:

17

equal to 1, the input carry C0 is equal 1 and the sum output is A plus the 2’s complement

of B. when M is equal to 0, the input carry is equal to 0 and the sum generates A+B

TRUTH TABLE FOR BCD ADDER: K MAP:

Y = S4 (S3 + S2)

LOGIC DIAGRAM OF BCD ADDER:

BCD SUM CARRY

S4 S3 S2 S1 C

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

18

PROCEDURE:

1. Connections are given as per the Logic diagram.

2. Set mode M =0 such that the circuit will operate in addition mode.

3. Set the Value of inputs A as 1001 and B as 1001 note the sum and output carry.

4. Repeat the same step in step 3 by keeping M=1 such that circuit will operate in

subtraction mode.

INFERENCE AND CONCLUSION:

Thus the 4 bit Binary Adder / Subtractor using IC7483 is been implemented for

both addition and subtraction and the corresponding truth tables are verified.

19

TRUTH TABLE FOR BINARY TO GRAY CODE CONVERTER:

| Binary input | Gray code output

B3 B2 B1 B0 G3 G2 G1 G0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

K-Map for G3:

G3 = B3

20

Expt. No. DESIGN AND IMPLEMENTATION OF

CODE CONVERTERS

Date:

AIM:

To design and verify the truth table of the following code converters

1. Binary to Gray converter
2. Gray to Binary converter &

3. BCD to Excess3 &

4. Excess3 to BCD.

COMPONENTS / EQUIPMENTS REQUIRED:

S. No. Components / Equipments Specifications
Quantity

1.

2.

3.

Digital IC trainer

NOT, AND, OR, Ex-OR Gate

Connecting wires

IC7404,7408,7432,7486
1

1

Sufficient numbers

THEORY:

Binary to GRAY Converter:

By representing the ten decimal digits with a four bit Gray code, we have another

form of BCD code. The Gray code however can be extended to any number of bits and

conversion between binary code and Gray code is sometimes useful. The following rules

apply for conversion:

1. The MSB in the Gray code is the same as the corresponding bit in the binary number.

2. Going from left to right, add each adjacent pair of binary bits to get the next Gray

code bit. Disregard carries.

GRAY to Binary Converter:

To convert from Gray code to binary code, A similar method is used, at there
are some differences. The following rules apply:

1. The MSB in the binary code is the same as the corresponding digit in the Gray code

2. Add each binary digit generated to the gray digit in the next adjacent position

Disregard carries.

21

K-Map for G2:

K-Map for G1:

K-Map for G0:

22

LOGIC DIAGRAM:

BINARY TO GRAY

TRUTH TABLE FOR GRAY CODE TO BINARY CONVERTOR:

| Gray Code | Binary Code

G3 G2 G1 G0 B3 B2 B1 B0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

23

K-Map for B3:

B3 = G3

K-Map for B2:

K-Map for B1:

24

K-Map for B0:

LOGIC DIAGRAM:

GRAY to Binary

25

TRUTH TABLE FOR BCD TO EXCESS-3 CONVERTOR:

| BCD input | Excess – 3 output

|

B3 B2 B1 B0 G3 G2 G1 G0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

1

1

1

1

1

x

x

x

x

x

x

0

1

1

1

1

0

0

0

0

1

x

x

x

x

x

x

1

0

0

1

1

0

0

1

1

0

x

x

x

x

x

x

1

0

1

0

1

0

1

0

1

0

x

x

x

x

x

x

K-Map for E3:

E3 = B3 + B2 (B0 + B1)

26

K-Map for E2:

K-Map for E1:

27

K-Map for E0:

LOGIC DIAGRAM:

BCD TO EXCESS-3 CONVERTOR

28

TRUTH TABLE FOR EXCESS-3 TO BCD CONVERTOR:

| Excess – 3 Input | BCD Output

|

B3 B2 B1 B0 G3 G2 G1 G0

0

0

0

0

0

1

1

1

1

1

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

1

K-Map for A:

A = X1 X2 + X3 X4 X1

29

K-Map for B:

K-Map for C:

30

K-Map for D:

LOGIC DIAGRAM:

EXCESS-3 TO BCD CONVERTOR

31

PROCEDURE:

1. Connections are given as per the Logic diagram .

2. Switch on the power supply.

3. Verify the truth table given for different inputs.

4. Repeat the above procedures for other converters.

INFERENCE AND CONCLUSION:

Thus the truth tables for Binary to Gray, Gray to Binary and BCD to Excess3
converters were verified.

REVIEW QUESTIONS:

1. State some examples of weighted codes.

2. Convert Gray code to binary: 11010101.

3. What is the significance of gray code?

4. Express the following decimals number into excess 3.(i)124 (ii) 7621

5. What is the use of parity bit?

32

S1 S0 Y

0 0 I0

0 1 I1

1 0 I2

1 1 I3

Selection
Lines

OUTPUT

V0

S1 S0

0 0 D0=Di

0 1 D1= Di

1 0 D2= Di

1 1 D3= Di

BLOCK DIAGRAM FOR 4:1 MULTIPLEXER & 1:4 DEMULTIPLEXER:

MULTIPLEXER

Logic Diagram: Truth Table:

Fig: 8.1 Tab: 8.1

DEMULTIPLEXER

Logic Diagram: Truth Table:

Fig: 8.2 Tab: 8.2

33

Expt. No: DESIGN AND IMPLEMENTATION OF MULTIPLEXER

AND DEMULTIPLEXER USING LOGIC GATES

Date:

AIM:

To design and implement multiplexer and demultiplexer using logic gates

COMPONENTS / EQUIPMENTS REQUIRED:

S.No. Name of the apparatus Specification Quantity

1 Digital Trainer kit -

2 OR gate IC7432 1

3 AND gate IC7411 1

4 NOT gate IC7404 1

5 Connecting wires -

THEORY:

Multiplexer:

It has a group of data inputs and a group of control inputs. The control inputs are used to

select one of the data inputs and connected to the output terminal. It selects one

information out of many information lines and directed to a single output line.

Demultiplexer:

Demultiplexers perform the opposite function of multiplexers. They transfer a small

number of information units (usually one unit) over a larger number of channels under the

control of selection signals. Fig shows a 1-line to 2-line Demultiplexer circuit. Construct

this circuit; connect an LED to each of the outputs D0 and D1. Set the select signal S to

logic 1 or logic 0, and toggle the input I between logic 1 and logic 0. Which output

followed the input when S = 1 and S = 0.

Pin Diagram for 3 Pin AND GATE IC 7411:

34

PROCEDURE:

1. Connections are given as per in the Logic diagram.

2. Inputs are given through the logic switches.

3. Outputs are noted and verified with truth table

INFERENCE AND CONCLUSION:

Thus the truth table of multiplexer and demultiplexer was studied and verified using

logic gates.

VIVA QUESTIONS:

1. What is a multiplexer?

2. What are the applications of multiplexer?

3. What is the difference between multiplexer & demultiplexer?

4. In 2
n:

 1 multiplexer how many selection lines are used?

5. Draw a 2 to 1 multiplexer circuit

6. Draw a 1 to 2 demultiplexer circuit.

35

CIRCUIT DIAGRAM: Encoder

Truth Table:

Outputs:

A = D4 + D5 + D6 + D7

B = D2 + D3 + D6 + D7

C = D1 + D3 + D5 + D7

INPUT OUTPUT

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

36

Expt. No. DESIGN AND IMPLEMENTATION OF

ENCODER

Date:

AIM:

To construct and verify the 8 X 3 Encoder.

COMPONENTS / EQUIPMENTS REQUIRED:

S. No Components / Equipments Specification Quantity

1. Digital IC trainer kit - 1

2. OR Gate IC7432 3

3. Connecting Wires -
Sufficient

Numbers

THEORY:

Digital Computers, Microprocessors and other digital systems are binary operated

whereas our language of communication is in decimal numbers and alphabetical

characters only. Therefore, the need arises for interfacing between digital system and

human operators. To accomplish this task, Encoder is used.

PROCEDURE:

1. Construct the circuit as per the diagram

2. Switch on the power supply.

3. Apply the necessary input and observe the outputs to verify the truth table.

INFERENCE AND CONCLUSION:

Thus an 8 x 3 encoder is constructed and verified.

REVIEW QUESTIONS:

1. Draw the basic block diagram of a practical decoder.
2. What is the need for decoder?

3. Name the procedure involved in decoding.

4. Give some practical applications where decoding is necessary.

5. List the advantages of decoding.

37

Serial in Serial out:

Fig: 9.1

Serial in Parallel Out:

Fig: 9.2

Parallel In Parallel Out

Fig: 9.3

38

Expt. No: IMPLEMENTATION OF SISO, SIPO, PISO AND PIPO

SHIFT REGISTERS

Date:

AIM:

To implement the 4 bit shift register using flip flops and to study the operations in

the following modes.
(i) Serial in serial out

(ii) Serial in parallel out

(iii) Parallel in parallel out

(iv) Parallel in serial out

COMPONENTS / EQUIPMENTS REQUIRED:

S.No. Name of the apparatus Range Quantity

1 Digital Trainer kit 1

2 D Flip Flop IC 7474 2

3 Connecting wires some

THEORY:

SHIFT REGISTER:

A register is a device capable of storing a bit. The data can be serial or parallel. The

register can convert a data from serial to parallel and vice versa shifting then digits to left

and right is the important aspect for arithmetic operations,

A register capable of shifting its binary information either to the right or to the left is

called a shift register. An N bit shift register consists of N flip-flops and the gates that

control the shift operation. A shift register can be used in four different configurations

depending upon the way in which the data are entered into and taken out of it. These four

configurations are:

 Serial-input, Serial-output

 Parallel-input, Serial-output
 Serial-input, parallel-output

 Parallel-output, parallel-output

The serial input is a single line going to the input of the leftmost flip-flop of the

register. The serial output is a single line from the output of the rightmost flip-flop of the

register, so that the bits stored in the register can come out through this line one at a time.

The parallel output consists of N lines, one for each of the flip-flops in the register,

so the information stored in the register can be inspected through these lines all at once.

39

PARALLEL IN SERIAL OUT

TRUTH TABLE FOR PISO SHIFT REGISTER:

CLK Q3 Q2 Q1 Q0 O/P

0 1 0 0 1 1

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 1

Pin Diagram IC7474:

40

PROCEDURE:

1. The flip-flop is connected using connecting wires as shown in the circuit.
2. The flip flop are then reset to zero internally with the help of reset to set inputs.

3. The bits are shifted in by giving suitable clock input.

4. Thus the truth table is then verified.

INFERENCE AND CONCLUSION:

Thus the operation of 4 bit shift register for SISO, SIPO, and PIPO was studied and
verified.

41

Expt. No: DESIGN AND IMPLEMENTATION OF

SYNCHRONOUS COUNTER

Date:

AIM:

 To construct and verify the synchronous up/down Counters.

 To design and implementation of 4-bit synchronous Johnson counter using D flip
flop.

COMPONENTS / EQUIPMENTS REQUIRED:

S.No. Name of the apparatus Range Quantity

1 Digital Trainer kit 1

2 D Flip Flop
JK Flip-Flop, AND Gate

IC 7474
IC 7473,7408

2
2,1

3 Connecting wires some

THEORY:

Johnson counter

The Johnson counter, also known as the twisted-ring counter, is exactly the same

as the ring counter except that the inverted output of the last flip-flop is connected to the

input of the first flip-flop.

The Johnson counter works in the following way: Take the initial state of the

counter to be 000. On the first clock pulse, the inverse of the last flip-flop will be fed into

the first flip-flop, producing the state 100. On the second clock pulse, since the last flip-

flop is still at level 0, another 1 will be fed into the first flip-flop, giving the state

110. On the third clock pulse, the state 111 is produced. On the fourth clock pulse, the

inverse of the last flip-flop, now a 0, will be shifted to the first flip-flop, giving the state

011. On the fifth and sixth clock pulse, using the same reasoning, we will get the states

001 and 000, which is the initial state again. Hence, this Johnson counter has six distinct

states: 000, 100, 110, 111, 011 and 001, and the sequence is repeated so long as there is

input pulse. Thus this is a MOD-6 Johnson counter.

A Johnson counters represent a middle ground between ring counters and binary

counters. A Johnson counter requires fewer flip-flops than a ring counter but generally

more than a binary counter; it has more decoding circuitry than a ring counter but less than

a binary counter.

42

Johnson counter

Circuit Diagram:

Truth Table:-

4- bit Synchronous Johnson Counter

Fig: 10.1

Tab: 10.1

43

THEORY:

Synchronous Counter

Clock input is applied simultaneously to all flip-flops. The output of the first FLIP-

FLOP is connected to the input of second FLIP-FLOP and so on.

Design of synchronous counter

Step 1: Find the number of flip-flops required. For an n-bit counter, n- flip-flops
is required. Step 2: Write the count sequence in tabular form.

Step 3: Determine the flip-flop inputs, which must be present for the desired next

State from the present state using excitation table of flip-flops.

Step 4: Prepare K-map for each flip-flop input in terms of flip-flop output as

input

Variables. Simplify the K-map and obtain the minimized expressions.
Step 5: Connect the circuit using the flip-flops.

Pin Diagram for IC7473:

PROCEDURE:

1. The connections are made as per the circuit diagram.

2. Switch on the power supply.

3. The input is given at the appropriate terminal and corresponding output is
observed and truth table is verified.

INFERENCE AND CONCLUSION:

Thus, the operations of 4 bit synchronous Johnson counter using D flip flop
and 3 bit Synchronous Up/Down Counter was studied and verified.

VIVA QUESTIONS:

1. What is the difference between Register & counter?

2. What is Johnson Counter?

3. What is ring counter?

4. Which flip flop is used in counters?

44

CIRCUIT DIAGRAM: Design of 3-bit synchronous up:

Design of 3-bit synchronous down counter:

Pin Diagram

Truth Table:

3 Bit Synchronous UP Counter
3 Bit Synchronous DOWN

Counter

Clock Q2 Q1 Q0 Clock Q2 Q1 Q0

0 0 0 0 0 1 1 1

1 0 0 1 1 1 1 0

2 0 1 0 2 1 0 1

3 0 1 1 3 1 0 0

4 1 0 0 4 0 1 1

5 1 0 1 5 0 1 0

6 1 1 0 6 0 0 1

7 1 1 1 7 0 0 0

45

Truth Table:

MOD 12 Counter

Clock Q0 Q1 Q2 Q3

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 0 0 0 0

MOD 10 COUNTERS

Truth Table:

MOD 10 Counter

Clock Q0 Q1 Q2 Q3

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 0 0 0 0

46

Simulator based study of Computer Architecture.

A computer architecture simulator is a program that simulates the execution of computer

architecture.

Computer architecture simulators are used for the following purposes:

 Lowering cost by evaluating hardware designs without building physical
hardware systems.

 Enabling access to unobtainable hardware.

 Increasing the precision and volume of computer performance data.

 Introducing abilities that are not normally possible on real hardware such as

running code backwards when an error is detected or running in faster-than-real
time.

Computer architecture simulators can be classified into many different categories
depending on the context.

 Scope:

Microarchitecture simulators model the microprocessor and its components. Full-
system simulators also model the processor, memory systems, and I/O devices.

 Detail: Functional simulators, such as instruction set simulators, achieve the same

function as modeled components. They can be simulated faster if timing is not

considered. Timing simulators are functional simulators that also reproduce

timing. Timing simulators can be further categorized into digital cycle-accurate

and analog sub-cycle simulators.

 Workload: Trace-driven simulators (also called event-driven simulators) react to

pre-recorded streams of instructions with some fixed input. Execution-driven

simulators allow dynamic change of instructions to be executed depending on

different input data.

Full-system simulators

A full-system simulator is execution-driven architecture simulation at such a level of detail

that complete software stacks from real systems can run on the simulator without any

modification. A full system simulator provides virtual hardware that is independent of the

nature of the host computer. The full-system model typically includes processor cores,

peripheral devices, memories, interconnection buses,

and network connections. Emulators are full system simulators that imitate obsolete

hardware instead of under development hardware.

The defining property of full-system simulation compared to an instruction set simulator

is that the model allows real device drivers and operating systems to be run, notjust single

programs. Thus, full-system simulation makes it possible to simulate individual

computers and networked computer nodes with all their software, from network device

drivers to operating systems, network stacks, middleware, servers, and application

programs.

https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Execution_(computing)
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Microarchitecture_simulation
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Computer_architecture_simulator#Full-system_simulator
https://en.wikipedia.org/wiki/Computer_architecture_simulator#Full-system_simulator
https://en.wikipedia.org/wiki/Instruction_set_simulator
https://en.wikipedia.org/wiki/Processor_core
https://en.wikipedia.org/wiki/Processor_core
https://en.wikipedia.org/wiki/Peripheral_device
https://en.wikipedia.org/wiki/Peripheral_device
https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/wiki/Emulator
https://en.wikipedia.org/wiki/Instruction_Set_Simulator
https://en.wikipedia.org/wiki/Instruction_Set_Simulator
https://en.wikipedia.org/wiki/Device_driver_wrapper
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Network_stack
https://en.wikipedia.org/wiki/Middleware
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Application_program
https://en.wikipedia.org/wiki/Application_program

47

Full system simulation can speed the system development process by making it easier to

detect, recreate and repair flaws. The use of multi-core processors is driving the need for

full system simulation, because it can be extremely difficult and time-consuming to

recreate and debug errors without the controlled environment provided by virtual

hardware.[1] This also allows the software development to take place before the hardware

is ready,[2] thus helping to validate design decisions.

Cycle-accurate simulator

A cycle-accurate simulator is a computer program that simulates a microarchitecture on a

cycle-by-cycle basis. In contrast an instruction set simulator simulates an instruction set

architecture usually faster but not cycle-accurate to a specific implementation of this

architecture; they are often used when emulating older hardware, where time precision is

important for legacy reasons. Often, a cycle-accurate simulator is used when designing

new microprocessors – they can be tested, and benchmarked accurately (including running

full operating system, or compilers) without actually building a physical chip, and easily

change design many times to meet expected plan.

Cycle-accurate simulators must ensure that all operations are executed in the proper

virtual (or real if it is possible) time – branch prediction, cache misses, fetches, pipeline

stalls, thread context switching, and many other subtle aspects of microprocessors.

https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Computer_architecture_simulator#cite_note-1
https://en.wikipedia.org/wiki/Computer_architecture_simulator#cite_note-2
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Instruction_set_simulator
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction_set_architecture

